On topological transitive maps on operator algebras

author

Abstract:

We consider the transitive linear maps on the operator algebra $B(X)$for a separable Banach space $X$. We show if a bounded linear map is norm transitive on $B(X)$,then it must be hypercyclic with strong operator topology. Also we provide a SOT-transitivelinear map without being hypercyclic in the strong operator topology.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on topological transitive maps on operator algebras

we consider the transitive linear maps on the operator algebra $b(x)$for a separable banach space $x$. we show if a bounded linear map is norm transitive on $b(x)$,then it must be hypercyclic with strong operator topology. also we provide a sot-transitivelinear map without being hypercyclic in the strong operator topology.

full text

Jordan Maps on Standard Operator Algebras

Jordan isomorphisms of rings are defined by two equations. The first one is the equation of additivity while the second one concerns multiplicativity with respect to the so-called Jordan product. In this paper we present results showing that on standard operator algebras over spaces with dimension at least 2, the bijective solutions of that second equation are automatically additive.

full text

Irreducible Positive Linear Maps on Operator Algebras

Motivated by the classical results of G. Frobenius and O. Perron on the spectral theory of square matrices with nonnegative real entries, D. Evans and R. Høegh-Krohn have studied the spectra of positive linear maps on general (noncommutative) matrix algebras. The notion of irreducibility for positive maps is required for the Frobenius theory of positive maps. In the present article, irreducible...

full text

ON TOPOLOGICAL EQ-ALGEBRAS

In this paper, by using a special family of filters $mathcal{F}$ on an EQ-algebra $E$, we construct a topology $mathcal{T}_{mathcal{mathcal{F}}}$ on $E$ and show that $(E,mathcal{T}_{mathcal{F}})$ is a topological EQ-algebra. First of all, we give some properties of topological EQ-algebras and investigate the interaction of topological EQ-algebras and quotient topological EQ-algebras. Then we o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 1

pages  123- 130

publication date 2012-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023